Simulating Quantum Field Theories on a Quantum Computer

Stephen Jordan

Can quantum computers simulate all physical processes efficiently?

Universality Conjecture:

Quantum circuits can simulate all physical dynamics in $poly(E, V, t, 1/\epsilon)$ time.

Status:

Non-relativistic QM	Yes: Now being optimized	
Quantum Field Theories	Probably: In progress	
Quantum Gravity/Strings	Nobody knows	

Quantum Field Theory

- Much is known about using quantum computers to simulate quantum systems.
- Why might quantum field theory be different?
 - Field has infinitely many degrees of freedom
 - Relativistic
 - Particle number not conserved
 - Formalism looks different.

When do we need QFT?

Nuclear Physics

Cosmic Rays

Accelerator Experiments

Coarse-grained many-body systems

2015 NERSC Usage By Discipline

(MPP HOURS IN MILLIONS)

2015 NERSC Usage By Discipline

(MPP HOURS IN MILLIONS)

Classical Algorithms

Feynman diagrams

Break down at strong coupling or high precision

Lattice methods

Cannot calculate scattering amplitudes

There's room for exponential speedup by quantum computing.

A QFT Computational Problem

Input: a list of momenta of incoming particles.

Output: a list of momenta of outgoing particles.

Results So Far

Efficient quantum simulation algorithms:

	Bosonic	Fermionic	
Massive	Jordan, Lee, Preskill Science, 336:1130 (2012)	Jordan, Lee, Preskill <i>ArXiv:1404.7115</i> (2014)	
Massless	?	?	

 BQP-hardness: classical computers cannot perform certain QFT simulations efficiently

[S. Jordan, H. Krovi, K. Lee, K. Preskill, 2017]

Better Speed and Broken Symmetries
 [A. Moosavian and S. Jordan, 2017]

Representing Quantum Fields

A field is a list of values, one for each location in space.

A quantum field is a superposition over classical fields.

$$\frac{1}{\sqrt{2}}$$
 $\left| \frac{i}{\sqrt{2}} \right|$

A superposition over bit strings is a state of a quantum computer.

ϕ^4 -theory

Lagrangian density

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi - m^2 \phi^2 - \frac{\lambda}{4!} \phi^4$$

For quantum simulation we prefer Hamiltonian formulation (equivalent)

$$H = \int d^dx \left[\pi^2 + (\nabla \phi)^2 + m^2 \phi^2 + \lambda \phi^4 \right]$$

$$[\phi(x), \pi(y)] = i\delta^{(d)}(x - y)$$

Our Algorithms

1) Choose a lattice discretization.

Bound discretization error (by renormalization group).

2) Prepare physically realistic initial state.

Is the most time-consuming step.

This depends strongly on which QFT simulated.

3) Implement time-evolution by a quantum circuit.

Use Trotter formulae.

4) Perform measurements on final state.

Complicated by vacuum entanglement.

Lattice Cutoff

Continuum QFT = limit of a sequence of theories on successively finer lattices.

Mass: m

Interaction strength: λ

Coarse grain

Mass: m'

Interaction strength: λ'

Lattice Cutoff

Continuum QFT = limit of a sequence of theories on successively finer lattices.

m and λ are functions of lattice spacing!

$$H = \frac{1}{2} \sum_{x \in \Omega} a^d \left[\pi^2 + (\nabla \phi)^2 + m^2 \phi^2 + \lambda \phi^4 \right]$$

Coarse grain

$$H_{\text{eff}} = \frac{1}{2} \sum_{x \in \Omega'} (2a)^d \left[\pi^2 + (\nabla' \phi)^2 + m_{\text{eff}}^2 \phi^2 + \lambda_{\text{eff}} \phi^4 + g \phi^6 + \dots \right]$$

Simulation converges as a^2

Adiabatic State Preparation

$$H(s) = H_{\text{free}} + sH_{\text{interaction}}$$

Prepare wavepackets in free theory, then adiabatically turn on interaction. Problem:

Adiabatic State Preparation

Solution: intersperse backward time evolutions with time-independent Hamiltonians.

This winds back dynamical phase on each eigenstate without undoing adiabatic change of

basis.

Simulating Detectors

Measure energy in localized regions:

 Need smooth envelope function to avoid excessive vacuum noise!

$$H_f = \sum_{\mathbf{x}} f(\mathbf{x}) \mathcal{H}(\mathbf{x})$$

Runtimes

Weak Coupling:

d=1	$(1/\epsilon)^{1.5}$
d=2	$(1/\epsilon)^{2.376}$
d=3	$(1/\epsilon)^{5.5}$

Strong Coupling:

	$\lambda_c - \lambda_0$	p	$n_{ m out}$
d = 1	$\left(\frac{1}{\lambda_c - \lambda_0}\right)^9$	p^4	$n_{ m out}^5$
d=2	$\left(\frac{1}{\lambda_c - \lambda_0}\right)^{6.3}$	p^6	$n_{ m out}^{7.128}$

Fermions:

- Fermion doubling problem
- Free vacuum different from Bosonic case

Gross-Neveu:

$$H = \int dx \left[\sum_{j=1}^{N} \bar{\psi}_j \left(m_0 - i\gamma^1 \frac{d}{dx} \right) \psi_j + \frac{g^2}{2} \left(\sum_{j=1}^{N} \bar{\psi}_j \psi_j \right)^2 \right]$$

Fermion Doubling Problem

$$\frac{d\psi}{dx} \to \frac{\psi(x+a) - \psi(x-a)}{2a}$$

$$\sqrt{p^2 + m^2} \to \sqrt{\sin^2 p + m^2}$$

Wilson Term

$$H \to H - \frac{r}{2a} \sum_{x} \bar{\psi} \left(\psi(x+a) - 2\psi(x) + \psi(x-a) \right)$$

Improved State Prep: Bosons

- In some cases (e.g. weakly coupled d=2),
 preparing the free vacuum is the rate limiting step.
- We can do this much faster using Bogoliubov transformation that looks like a Fast Fourier Transform.

[Somma, Jordan, unpublished]

Essentially same idea as 2nd quantized FFT from:

[Babbush, Wiebe, McClean, McLain, Neven, Chan, 2017]

Improved State Prep: Fermions

- Two problems with adiabatic state preparation:
 - Cannot reach symmetry-broken phase
 - Runtime bound not practical: $O(\epsilon^{-8})$
- A solution for both:
 - First, prepare the vacuum from MPS
 - Then, resonantly excite single-particle wavepackets
 - Tighter analysis: CFT entropy and Floquet theory:

$$O(\epsilon^{-3.23})$$

[A. Moosavian, S. Jordan, 2017]

Tensor Network Ansatzes

image credit: G. Evenbly

Tensor Network Ansatzes

Near-Term Prospects?

quantum supremacy

science applications

commercial applications

- Simulating conformal field theories using MERA-based variational eigensolvers
- Simulating commuting Hamiltonians
- Simulating high-connectivity systems, e.g. spin glasses or SYK model

Near-Term Prospects?

quantum supremacy

science applications

commercial applications

- Simulating conformal field theories using MERA-based variational eigensolvers
- Simulating commuting Hamiltonians
- Simulating high-connectivity systems, e.g. spin glasses or SYK model

Thanks!